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ABSTRACT

A new mixed spectral domain method is applied for the

analysis of generalized dielectric-loaded ridged waveguides.
Auxillary structures are constructed for formulating the spec-

tral Green’s functions and applying the spectral immittance
method. Magntic surface currents at apertures are identified

as unknowns. Mixing different spectral domains existing on

the two sides of an aperture in a spectral Galerkin approach

leads to the characteristic equations required for the disper-

sion analysis. Representative results are obtained to illustrate

the application of the method.

I. INTRODUCTION

Conventional ridged waveguide and its variations have

found many applications in microwave and millimeter-wave

devices [1]-[6]. They allow wave propagation with smaller

overall guide dimensions than those required in rectangular

wavegnides. In addition, ridged waveguides offer the advan-

tages of large bandwidths, low characteristic impedances, and

the possibility of integrated circuit designs [3].

Since the original ridged waveguide structure was pro-

posed, different variations, including dielectric loading, have

been made to control its propagation characteristics [7]. In
this paper a general mixed spectral domain technique will be

developed and used to analyze a class of dielectric-loaded

ridged waveguides shown in Fig. 1. These structures have

been analyzed separately before with analytical approxima-

tions, mode matching techniques, variational techniques, and

Method of Moments [7]- [10]. Compared to these previous

methods, the technique developed in this paper is more versa-

tile and numerically efficient.

The spectral domain method, using a generalized immit-

tance approach [11], is popular for the analysis of planar and

quasi-plamw structures. It offers simple formulation and high
numerical efficiency . With a proper choice of basis func-

tions, only a small number of them is required, leading to a

small matrix size. The conventional spectral domain immit-
t~ce approach, however, cannot be applied directly to

analyze the structures shown in Fig. 1. This is because the
Fourier transform variable c%in x will have different vatues

for different regions, in order to satisfy the boundary condi-

tions on the side walls, which have different separations in

different regions. As a result, a new mixed domain approach

is developed, which maintains the advantages or the spectral

domain immittance method. The approach is general and can

be applied to analyze other structures consisting of variations

in side wall separations, e.g., fin-lines with grooves.

II. FORMULATION

As an illustration of the formulation, the slotted,

dielectrically loaded ridged waveguide in Fig. l(c) will be

considered. Because of the symmetry, as shown in Fig. 2(a),

only half of the original structure needs to be co~lsidered, with

a magnetic wall at y=O. The spectral domain immittance

approach can then be used for the equivalent structures shown

in Fig. 2(b). In Fig. 2(b), following the equivalence principle

[12], apertures are replaced by perfectly conducting planes

and appropriate magnetic surface currents are used to restore

the fields. The total transverse (to y) m~netic field at y=d~

is radiated by magnetic surface current M 1 in the presence of

the conducting plane and the environment for y >dl. On the

other hand, the transverse magnetic field aty=d< afid y =d~

are radiated by magnetic surface currents –M 1 and M z in the

presence of the short~d apertures. Finally, the magnetic field

at y=d; is due to –M2 radiating in the presence of the con-

ducting plane and the environment for y <d2. One can use

the conventional spectral domain immittance approach to

easily derive the spectral dyadic Green’s functions for the
equivalent structures. Enforcement of continuity of the

transve~se maggetic fields across the apertures allows one to

relate M 1 and M2.

The spectral Galerkin method is then applied by expand-

ing the unknown magnetic surface currents with sets of

known basis functions provided in [13], weighted with

unknown coefficients. The Fourier transforms of these basis

functions are functions of zero-order Bessel functions of the

first kind, sampled at different intervals. Further these func-

tions provide a singularity behavior o~x–1’2 a~the edges of

the apertures for the z components of M 1 and M2. Theoreti-

cally the edge singularit
~–l+k rather than as x

_l,J of the aperture fields behave as

, where k can be determined from

the formula provided in [14]. In order to incorporate the
exact edge singularity behavior, the square rout appearing in

these basis functions needs to be replaced by a (1–l.) -th root.

However, this will make the Fourier transforms of the basis
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functions more difficult to evaluate. As numerical exper-

iments have shown that there is no significant differences in

the calculated dispersion characteristics whether the square

root or (1-1) -th root is used, the square root is chosen for the

basis functions.

To determine the unknown weighting coefficients, the

transverse magnetic fields at~=d 1 and y=d2 are tested with

the same basis functions for M 1 and fi2. One then obtains

aperture, after symmetry is applied and a magnetic wall is

inserted at the center. Hence, Eq. (2) is not required, and

CM& and C~2Z should be set to zero in Eq. (l).

III. RESULTS

As an illustration of the versatility and validity of the

method, numerical results on the normalized propagation

constant for the dominant mode are obtained in Figs. 3-5

respectively for a dielectric-loaded single-ridged waveguide,

a dielectric-loaded double-ridged waveguide, and a slotted,

dielectrically loaded ridged waveguide. Three basis functions
for each component of the magnetic surface current are used,

and the Fourier transform variables are aa=nm/a, flb=nlr/b,

cxC=nrclc. As one can see, the propagation characteristic can

be greatly affected by dielectric loading. Comparison with

previous numerical and experimental results are excellent.

IV. CONCLUSIONS

A simple and numerically efficient mixed spectral

domain method has been presented for the analysis of gen-

eralized dielectric-loaded ridged waveguides. The formttk-

tion allows one to maintain the advantages of the spectral

domain immittance approach in the more complicated struc-

tures, which requires mixing two different spectral domains

on the two sides of an aperture. Representative results for
different structures compare well with those obtained previ-

ously with different methods. This method appears to be suit-

able for efficient analysis of more complicated transmission

structures which involve variations in the side-wall separa-

tions in a rectangular waveguide.

1,

2,

where CM 1 and CM z are the weighting coefficients for E 1 3.

and ~2 (with both x and z components), ~‘s are the spectral

Green’s functions, and CXa,~h, and a= represent the discrete

Fourier transform variables. Different factors, 2x/a, 2n/b,

and 2n/c, corresponding to different sampling intervals, occur
because of the different spectral domains encountered. Also, ~
it should be noted that the summations over all spectral terms

as well as the basis functions are omitted in Eqs. (l)-(2) for

simplicity. The propagation constant k, is given by the eigen-

values of the combined matrix equations (1) and (2), which

can then be solved for the unknown weighting coefficients.

The fields and impedances can then be obtained.
5

Finally the dielectric-loaded single-ridged and double-

ridged waveguides shown in Figs. 1(a) and 1(b) can be treated

with a similar procedure. These structures have only one
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1 A class of ridged waveguides. (a) Dielectric-loaded

single-ridged waveguide. (b) Dielectric-loaded

double-ridged wavegttide. (c) Slotted dielectric-loaded

ridged waveguide.

t Y

A

dl

x

gnetic Wall

1+ w

(:)

LaQ.QJ
+-ml

●0s00 -

(b)

Fig. 2 Equivalent structures for the slotted dielectric-loaded

ridged waveguide shown in Fig. 1(c). (a) Fl[alf of original

structure, with magnetic wall at y=O. (b) Equivalent
structures based on the equivalence principle.
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Fig. 4 Normalized propagation constant versus dielectric

slab thickness for dielectric-loaded double-ridged

waveguides.
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