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ABSTRACT

A new mixed spectral domain method is applied for the
analysis of generalized dielectric-loaded ridged waveguides.
Auxillary structures are constructed for formulating the spec-
tral Green’s functions and applying the spectral immittance
method. Magntic surface currents at apertures are identified
as unknowns. Mixing different spectral domains existing on
the two sides of an aperture in a spectral Galerkin approach
leads to the characteristic equations required for the disper-
sion analysis. Representative results are obtained to illustrate
the application of the method.

1. INTRODUCTION

Conventional ridged waveguide and its variations have
found many applications in microwave and millimeter-wave
devices [1]-[6]. They allow wave propagation with smaller
overall guide dimensions than those required in rectangular
waveguides. In addition, ridged waveguides offer the advan-
tages of large bandwidths, low characteristic impedances, and
the possibility of integrated circuit designs [3].

Since the original ridged waveguide structure was pro-
posed, different variations, including dielectric loading, have
been made to control its propagation characteristics [7]. In
this paper a general mixed spectral domain technique will be
developed and used to analyze a class of dielectric-loaded
ridged waveguides shown in Fig. 1. These structures have
been analyzed separately before with analytical approxima-
tions, mode matching techniques, variational techniques, and
Method of Moments [7]-[10]. Compared to these previous
methods, the technique developed in this paper is more versa-
tile and numerically efficient.

The spectral domain method, using a generalized immit-
tance approach [11], is popular for the analysis of planar and
quasi-planar structures. It offers simple formulation and high
numerical efficiency . With a proper choice of basis func-
tions, only a small number of them is required, leading to a
small matrix size. The conventional spectral domain immit-
tance approach, however, cannot be applied directly to
analyze the structures shown in Fig. 1. This is because the
Fourier transform variable o in x will have different values
for different regions, in order to satisfy the boundary condi-
tions on the side walls, which have different separations in
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different regions. As a result, a new mixed domain approach
is developed, which maintains the advantages of the spectral
domain immittance method. The approach is general and can
be applied to analyze other structures consisting of variations
in side wall separations, e.g., fin-lines with grooves.

. FORMULATION

As an illustration of the formulation, the slotted,
dielectrically loaded ridged waveguide in Fig. 1(c) will be
considered. Because of the symmetry, as shown in Fig. 2(a),
only half of the original structure needs to be considered, with
a magnetic wall at y=0. The spectral domain immittance
approach can then be used for the equivalent structures shown
in Fig. 2(b). In Fig. 2(b), following the equivalence principle
[12], apertures are replaced by perfectly conducting planes
and appropriate magnetic surface currents are used to restore
the fields. The total transverse (to y) magnetic field at y=d{"
is radiated by magnetic surface current M in the presence of
the conducting plane and the environment for y>d;. On the
other hand, the transverse magnetic field at y=d; and y=d;
are radiated by magnetic surface currents —M, and M5 in the
presence of the shorted apertures. Finally, the magnetic field
at y=dj is due to —M, radiating in the presence of the con-
ducting plane and the environment for y<d,. One can use
the conventional spectral domain immittance approach to
easily derive the spectral dyadic Green’s functions for the
equivalent structures. Enforcement of continuity of the
transverse magnetic fields across the apertures allows one to
relate My and M 5.

The spectral Galerkin method is then applied by expand-
ing the unknown magnetic surface currents with sets of
known basis functions provided in [13], weighted with
unknown coefficients. The Fourier transforms of these basis
functions are functions of zero-order Bessel functions of the
first kind, sampled at different intervals. Further these func-
tions provide a singularity behavior of x™2 at the edges of
the apertures for the z components of M, and M,. Theoreti-
cally the edge singulan't%f of the aperture fields behave as
x~* rather than as x /%, where A can be determined from
the formula provided in [14]. In order to incorporate the
exact edge singularity behavior, the square root appearing in
these basis functions needs to be replaced by a (1-A) -th root.
However, this will make the Fourier transforms of the basis
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functions more difficult to evaluate. As numerical experi-
ments have shown that there is no significant differences in
the calculated dispersion characteristics whether the square
root or (1~A) -th root is used, the square root is chosen for the
basis functions.

To determine the unknown weighting coefficients, the
transverse magnetic fields at y=d and y=d, are tested with
the same basis functions for M; and M,. One then obtains
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where Cys1 and Cyr, are the weighting coefficients for M 1

and M, (with both x and z components), G’s are the spectral
Green’s functions, and o, o, and o represent the discrete
Fourier transform variables. Different factors, 2mw/a, 2n/b,
and 2r/c, corresponding to different sampling intervals, occur
because of the different spectral domains encountered. Also,
it should be noted that the summations over all spectral terms
as well as the basis functions are omitted in Eqgs. (1)-(2) for
simplicity. The propagation constant £, is given by the eigen-
values of the combined matrix equations (1) and (2), which
can then be solved for the unknown weighting coefficients.
The fields and impedances can then be obtained.

Finally the dielectric-loaded single-ridged and double-

ridged waveguides shown in Figs. 1(a) and 1(b) can be treated
with a similar procedure. These structures have only one
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aperture, after symmetry is applied and a magnetic wall is
inserted at the center. Hence, Eq. (2) is not required, and
Cir2x and Cyy2, should be set to zero in Eq. (1).

III. RESULTS

As an illustration of the versatility and validity of the
method, numerical results on the normalized propagation
constant for the dominant mode are obtained in Figs. 3-5
respectively for a dielectric-loaded single-ridged waveguide,
a dielectric-loaded double-ridged waveguide, and a slotted,
dielectrically loaded ridged waveguide. Three basis functions
for each component of the magnetic surface current are used,
and the Fourier transform variables are o,=nm/a, o,=nn/b,
o.=n7/c. As one can see, the propagation characteristic can
be greatly affected by dielectric loading. Comparison with
previous numerical and experimental results are excellent.

IV. CONCLUSIONS

A simple and numerically efficient mixed spectral
domain method has been presented for the analysis of gen-
eralized dielectric-loaded ridged waveguides. The formula-
tion allows one to maintain the advantages of the spectral
domain immittance approach in the more complicated struc-
tures, which requires mixing two different spectral domains
on the two sides of an aperture. Representative results for
different structures compare well with those obtained previ-
ously with different methods. This method appears to be suit-
able for efficient analysis of more complicated transmission
structures which involve variations in the side-wall separa-
tions in a rectangular waveguide.
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Fig. 1 A class of ridged waveguides. (a) Dielectric-loaded
single-ridged waveguide. (b) Dielectric-loaded
double-ridged waveguide. (c) Slotted dielectric-loaded
ridged waveguide.
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Fig. 2 Equivalent structures for the slotted dielectric-loaded
ridged waveguide shown in Fig. 1(c). (a) Half of original
structure, with magnetic wall at y=0. (b) Equivalent
structures based on the equivalence principle.
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Fig. 4 Normalized propagation constant versus dielectric
slab thickness for dielectric-loaded double-ridged

waveguides.
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